锁作为并发共享数据,保证一致性的工具,
在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) 。这些已经写好提供的锁为我们开发提供了便利,但是锁的具体性质以及类型却很少被提及。
下面将分析JAVA中常见的锁名称以及特性。
1、自旋锁
自旋锁是采用让当前线程不停地的在循环体内执行实现的,当循环的条件被其他线程改变时 才能进入临界区。如下
private AtomicReference<Thread> sign =new AtomicReference<>();
public void lock(){
Thread current = Thread.currentThread(); while(!sign .compareAndSet(null, current)){ } }public void unlock (){
Thread current = Thread.currentThread(); sign .compareAndSet(current, null); }}
使用了CAS原子操作,lock函数将owner设置为当前线程,并且预测原来的值为空。unlock函数将owner设置为null,并且预测值为当前线程。
当有第二个线程调用lock操作时由于owner值不为空,导致循环一直被执行,直至第一个线程调用unlock函数将owner设置为null,第二个线程才能进入临界区。
由于自旋锁只是将当前线程不停地执行循环体,不进行线程状态的改变,所以响应速度更快。但当线程数不停增加时,性能下降明显,因为每个线程都需要执行,占用CPU时间。如果线程竞争不激烈,并且保持锁的时间段。适合使用自旋锁。
注:该例子为非公平锁,获得锁的先后顺序,不会按照进入lock的先后顺序进行。
???
2.自旋锁的其他种类
上文我们讲到了自旋锁,在自旋锁中 另有三种常见的锁形式:TicketLock ,CLHlock 和MCSlock
Ticket锁主要解决的是访问顺序的问题,主要的问题是在多核cpu上:
import java.util.concurrent.atomic.AtomicInteger;
public class TicketLock {
private AtomicInteger serviceNum = new AtomicInteger(); private AtomicInteger ticketNum = new AtomicInteger(); private static final ThreadLocal<Integer> LOCAL = new ThreadLocal<Integer>();public void lock() {
int myticket = ticketNum.getAndIncrement(); LOCAL.set(myticket); while (myticket != serviceNum.get()) { }}
public void unlock() {
int myticket = LOCAL.get(); serviceNum.compareAndSet(myticket, myticket + 1); }}
每次都要查询一个serviceNum 服务号,影响性能(必须要到主内存读取,并阻止其他cpu修改)。
CLHLock 和MCSLock 则是两种类型相似的公平锁,采用链表的形式进行排序。
public class CLHLock {
public static class CLHNode { private volatile boolean isLocked = true; }@SuppressWarnings("unused")
private volatile CLHNode tail; private static final ThreadLocal<CLHNode> LOCAL = new ThreadLocal<CLHNode>(); private static final AtomicReferenceFieldUpdater<CLHLock, CLHNode> UPDATER = AtomicReferenceFieldUpdater.newUpdater(CLHLock.class, CLHNode.class, "tail");public void lock() {
CLHNode node = new CLHNode(); LOCAL.set(node); CLHNode preNode = UPDATER.getAndSet(this, node); if (preNode != null) { while (preNode.isLocked) { } preNode = null; LOCAL.set(node); } }public void unlock() {
CLHNode node = LOCAL.get(); if (!UPDATER.compareAndSet(this, node, null)) { node.isLocked = false; } node = null; }}
CLHlock是不停的查询前驱变量, 导致不适合在NUMA 架构下使用(在这种结构下,每个线程分布在不同的物理内存区域)
MCSLock则是对本地变量的节点进行循环。不存在CLHlock 的问题。
public class MCSLock {
public static class MCSNode { volatile MCSNode next; volatile boolean isLocked = true; }private static final ThreadLocal<MCSNode> NODE = new ThreadLocal<MCSNode>();
@SuppressWarnings("unused") private volatile MCSNode queue; private static final AtomicReferenceFieldUpdater<MCSLock, MCSNode> UPDATER = AtomicReferenceFieldUpdater.newUpdater(MCSLock.class, MCSNode.class, "queue");public void lock() {
MCSNode currentNode = new MCSNode(); NODE.set(currentNode); MCSNode preNode = UPDATER.getAndSet(this, currentNode); if (preNode != null) { preNode.next = currentNode; while (currentNode.isLocked) {}
} }public void unlock() {
MCSNode currentNode = NODE.get(); if (currentNode.next == null) { if (UPDATER.compareAndSet(this, currentNode, null)) {} else {
while (currentNode.next == null) { } } } else { currentNode.next.isLocked = false; currentNode.next = null; } }}
从代码上 看,CLH 要比 MCS 更简单,
CLH 的队列是隐式的队列,没有真实的后继结点属性。
MCS 的队列是显式的队列,有真实的后继结点属性。
JUC ReentrantLock 默认内部使用的锁 即是 CLH锁(有很多改进的地方,将自旋锁换成了阻塞锁等等)。
(全文完)